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Abstract. Percolation, Ising critical clusters and branched polymers are described by a 
stepwise branching-out chain. A mean-field study shows that the chains’ filaments become 
ideal (random-walk-like) at an upper critical dimension 0, = 6.8 and 8, respectively. lsing 
clusters at D from 8 to 4 exhibit a quasi-ideality. The results reveal a dissimilar geometry: 
the chains’ filaments are strikingly more numerous and stretched for Ising clusters than 
for both polymers and percolation. Linear analogues are discussed. 

Single percolation clusters may be described with the help of a branching-out random 
chain, growing in a sequence of steps (time), from an arbitrary origin (Alexandrowicz 
1980). The construction provides a convenient algorithm for computer simulation and, 
in addition, enables one to study scaling laws for mass and radius against the ‘time’ 
variable. Such a description may be extended to other aggregates, a term which here 
denotes a connected s-particle random system. Thus it has been applied to study 
diffusion-limited percolation (Termonia and Meakin 1985), lattice animals (Havlin et 
al 1984, Meirovitch 1987), branched polymers synthesised in an irreversible sequence 
of steps (Alexandrowicz 1985) and Ising critical clusters (Alexandrowicz 1988). In 
this connection two different types of aggregates at equilibrium should be distinguished, 
depending on whether the particle connectivity is permanent or transient. For the 
‘polymer’ type, the ensemble consists of distinct shapes of a permanent macromolecule. 
For the ‘cluster’ type, the ensemble consists of distinct allocations of N particles to a 
volume (lattice), and the clusters constitute transient connected subsets of N. For 
example, an irreversibly bonded branched polymer is polymer-like and is described 
by lattice animals (Lubensky and Isaacson 1978) or related models (Zimm and Stock- 
mayer 1949, Alexandrowicz 1985). However, a reversible gel is cluster-like and is 
described as percolation (de Gennes 1976, Stauffer 1976). The cluster-like aggregates 
should be further subdivided into athermal, like percolation, in which the connectivity 
is due to a chancy proximity of particles; and thermal, like Ising, in which it is due 
to a coupling of interacting particles. Finally, all these aggregates may be branched 
or linear. This letter studies, in the mean-field approximation, the branching-out (or 
linear) chains, with the help of which the various aggregate types may be constructed. 
The goal is to relate the diversity of the aggregate scaling behaviour to the dissimilar 
nature of the corresponding chains. This leads to an explanation of unequal upper 
critical dimensions D,. The results also reveal novel features, such as a quasi-ideality 
of Ising cluster chains in dimension D = 4-8, the scaling with the time variable which 
throws light on the aggregate geometry, and the possibility of new aggregate types, 
like linear percolation. 
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Stepwise construction of an aggregate. Empty lattice sites are assigned as A or B, 
in a sequence of steps i = 1,2, . . . , with the help of the transition probability p , .  The 
aggregate consists of connected A. We start from an A which constitutes an arbitrary 
initial growth ‘tip’. Let G, denote the number of tips at time t .  Thus Go= 1 (figure 
l ( a ) ) .  At t = 1, near neighbours ( N N )  to the initial tip are assigned with p , .  Suppose 
that x are assigned A and become new tips, namely G, = x (whereby SG = G, - Go = x - 
1, cf figure l ( b )  for x = 2 ) .  Expended tips constitute the cluster mass s; thus s, = 1. 
At t = 2 and at subsequent t ,  the N N  sites of each of the GI-,  tips are assigned (in any 
order); termination occurs if G, = 0; G, > 1 implies branching. The branches grow in 
random trajectories. Suppose that a N N  site of a tip turns out to have been already 
visited via another tip (figure l ( b ) )  and assigned already as an A or B. If the aggregate 
described is cluster-like, i.e. it constitutes a part of a lattice microstate, the revisited 
site merely cannot be assigned once again (if it is A, a loop is closed). The chain of 
steps obeys therefore excluded volume ( EV) in the sense of avoidance of a repetitious 
assignment of lattice sites. However, if the aggregate is polymer-like, the assignment 
of an A at an ith step, to a site already occupied by another A, implies that the 
configuration is self-intersecting. EV therefore requires its rejection from a random 
sample of shapes of a polymer of mass s 3 i. As we shall see, this avoidance against 
rejection causes a fundamental dissimilarity. The construction of a sample of such 
‘aggregate chains’ enables us to evaluate the weight average mass (Stauffer 1979) s, 
and radius R. Indefinite growth of chains (at criticality) permits one to study the 
scaling dependence of s, and R, upon t ,  namely upon a length variable (Alexandrowicz 
1980) 

s , - t Y ~  and R - t ” c .  (1) 

Clearly the fractal dimension is df = y l /  v,. Another useful property is the increase of 
the average number of tips G, with mass s (‘growth surface’), 

G - sg. (2) 

y , = ( l - g ) - l .  (3) 

Since G=ds,/dt ,  (1) and (2) imply 

Percolation (athermal)  clusters. An I th  chain of mass s (s expended tips) has 
G, = 1 +X:=, SG, growing tips. In percolation the transition probability is constant, 
p ,  = p  and 1 - p ,  for A and B respectively. We first ignore the occurrence of loops at 

la1 
Tc 
I bi 

4 
I C )  

Figure 1. Circles and boxes denote growth tips and perimeter sites, respectively. ( a )  f = 0: 
the initial growth tip, Go= I .  ( 6 )  f = 1: G, = 2  and mass (of expended tips) s = I .  E V  

avoidance is displayed. ( c )  As ( b ) ,  for an Ising cluster of exces +1 (at zero average 
magnetisation). The perimeter consists of one -1 and one randomly chosen +1. 



Letter to the Editor L85 1 

D Z D,. The branching-out chain may be therefore constructed on a Cayley tree of 
coordination z, so that, on average, (SG,) = zp  - 1. (Since the average for an ith step 
is taken irrespective of steps i f <  i, it requires that all chains be included, also those 
that terminate prior to i ) .  At the critical point pc = z - I ,  (6G,) = 0 and, on average, the 
chains grow marginally to infinity, i.e. some terminate and, at correspondance, some 
attain s with X:=, SG, > O .  Hence G ( s )  of (2), in which the average includes only 
chains that do attain s (denoted by subscript s in what follows), is estimated by the 
random s-step deviation from (6G,) = 0 

F 

G - sg - C (SG,), = (4) 
, = I  

giving go = (random) and the corresponding mean-field (‘ideal’) value 7’: = 2 (cf 3). 
Since the branches grow purely at random, U’: = f and df  = y:/ U: = 4. A perturbation 
due to loops is now considered. The mean-field probability of a loop between a pair 
of particles i > j  is 

The loops decrease the number of N N  available to a tip (EV) .  The total decrease of G 
(introducing positive constants c,  and c2) is 

The first term affects p c ,  the second the s dependence of G. The upper critical dimension 
D,, below which the second term dominates the ideal s dependence of G, is 

2 -  (D , /d : )  = g o  or 0, = (2  - go)/[(l - g o ) v ? ]  ( EV avoidance) (7) 
giving D, = 6. At and above D, the mean field holds. The ideal values of the well 
known exponents in s, - E-’ and R - E - ”  ( E  = Ip -pel), notably yo  = 1 and Y O  = f , may 
therefore be determined in the conventional manner. An interesting relation follows 
from the fact that, at p , ,  G increases as sg, but some chains terminate before attaining 
s, so that the average for all chains is (SG,)=O. Let us introduce the scaling law for 
the number of s clusters per lattice site, n,v = s-‘. The probability of an s cluster is ~ n , ~  
(Stauffer 1979), and that to attain s isf, = 1 -Zgri in,. Hence, in a mean-field approxi- 
mation (SG,) = (1 + SG/ Ss)L - 1 = 0, giving 

g o =  3 - T o  (= 1 - P O / ( P O +  YO)) (8) 
the expression in brackets being obtained from finite-size scaling. For percolation 
P o  = y o  = 1, reproducing g o  = f (4). At D < D,, EV causes an expansion, i.e. a decrease 
of d,; thus y, decreases from 2 towards 1 (linear chain), while Y, increases from 4 
towards 1 (fully stretched). 

Ising (thermal) clusters. An Ising critical cluster may be identified with a randomly 
picked connected region of excess + I  (-1) spins, demarcated by a perimeter consisting 
of +1 and -1 at average proportion (Alexandrowin 1988). Such clusters reproduce 
the Ising critical behaviour, rigorously so in the mean-field regime, on a Cayley tree. 
Indeed in that regime they become exactly equivalent to the clusters defined, on the 
basis of the Fortuin and Kasteleyn (1972) formalism, by Coniglio and Klein (1980) 
with a subsequent extension (Swendsen and Wang 1987). The clusters of excess +1 
are also conveniently constructed with the help of a branching-out chain (cf ‘ab  initio’ 
construction in Alexandrowicz (1988)). This first assigns vi = *1 on an empty lattice, 
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with transition probability p , ,  and the second allots the -1 and an equivalent amount 
of +1 to the perimeter, and the remaining +1 to the cluster (figure l ( c ) ) .  An Ith cluster 
of mass s is sampled with probability P, = H i = ,  p , .  The right definition of p ,  requires 
that Pi be equal to the Boltzmann factor (determined by the Ising Hamiltonian at 
given T and H = 0), divided by the partition function as follows: 

pi =z-' exp fK a, 5). (9 )  ( , = I  , = I  

Here K = J /  kT is the Ising coupling, 2" the partition function, z the number of N N  

to a,, while index i refers to the + l  spins in the cluster). Equation (9) is relatively 
easy to fulfil in the mean-field regime D 3 D, as follows. Let us take again a construction 
on a Cayley tree of coordination z. If an ith tip contributes SG,, the excess of +1 
among its z N N  descendents is l+SG, and (9) becomes 

It follows that the product of p i  on the LHS of (10) has to depend on 2 SG,. Let the 
transition probability for the initial tip at the critical point K = K ,  be defined as 

p c  = E-' exp( K,) E = 2 sinh( K,). (11) 

The corresponding average excess of +1 spins (p,) over -1 spins (1 - p c )  is z(2p, - 1). 
Hence (SG,) = z(2pC - 1) - 1 = z tanh(K,) - 1 = 0 (implying zK, = 1 for z >> 1). Let index 
k denote the ( G , )  tips created during time t, and SG, be the corresponding mean 
fluctuation 

G ,  

SG,=G; '  S G k .  (12) 
& = I  

A (mean-field) transition probability for the G, tips, utilised during time t + 1, is then 
defined by 

P , + ~  =P, exp(K,SG,). (13) 
In this manner the product of the P , + ~  for time t + 1 precisely compensates C 6Gk 
accumulated during the preceding time t. The Zth cluster contribution to the partition 
function (the Boltzmann factor divided by the sampling probability P,) is constant 
and equal to E'. This makes the latter equal to 2' (per cluster), showing ipsofucto 
that P, defined with (1  1)-( 13) indeed fulfills (10). Let us now considerthe consequences 
of (13) upon the tips' creation, SG,, during time t + l .  From (11)-(13), (SG,)= 
z(2p, - 1) - 1 = (SG,). The mean random fluctuation (SG,) scales as (G,)-I" - s - ~ ' ' ,  
where s = s ( r ) .  Hence 

5 

G - sg - c (SG,), -SI-"' (14) 
, = I  

giving go = 3 (coupled) and yy = 3. (The result is independent of our choice of a mean 
field P , + ~  in (13), e.g. the same result would be obtained with a choice of pi depending 
of SG, alone, where j immediately precedes i on the tree.) The striking conclusion is 
that, due to the coupled connectivity, the branching-out of Ising cluster chains is not 
purely random even in the mean-field regime D 3  D,. The perturbation due to loops 
cannot be ignored below D / d , = $  (see (7) ,  (14)). As before, in the absence of loops 
vp = f . Hence d :  = rP/ v: = 6 and the corresponding 0, we call it Drand, is 6 x $= 8. 
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Below that value, EV expansion makes dr decrease. This decrease may result from a 
decrease of y, or an increase of v,, or both. Since v: = f is purely random, while y’: = 3 
is not, it is conjectured that the initial effect of EV will increase v, just sufficiently to 
keep EV still marginally negligible, that is to preserve D / d f =  $ and, by this token, the 
mean-field behaviour. If so, y: = 3 (14) remains unaffected. Summarising, in the 
quasi-ideal regime at D, 4 D 4 Drand, v, (= y’:/dr) just compensates the decrease of D 
and preserves 

Due to the mean-field behaviour, the conventional exponents y and v also retain their 
ideal value. Equation (8) also holds, reproducing go = 1 - [f/( 1 + f ) ]  = $ (14). The 
compensation halts at D, = 4, when v, = 1 (fully stretched). Below that point a further 
decrease of d f  causes y , ( g )  to decrease, while v, cannot increase any more and 
presumably remains at, or close to, Y, = 1. Recent simulation results (Alexandrowicz 
1988) support this very unexpected behaviour at D < 0, = 4 s D 4 Drand = 8. 

Brunchedpolymer. The scaling laws for a polymer of mass s are R - s ”  (i.e. v = l/dr) 
and n, - s-‘. Its description by a branching-out chain is straightforward. Lattice sites 
NN to a tip are assigned as belonging, or not belonging, to the polymer with the help 
of a constant transition probability p i  = p  or pi = 1 - p  respectively. The chain grows 
marginally to infinity when zp, = 1. Such a construction essentially corresponds to the 
‘termination-limited’ polymer (Alexandrowicz 1985). Again we consider first the mean- 
field regime D 3 D,, loops are ignored and the construction .proceeds on a Cayley 
tree. The evaluation of G ( s )  is therefore precisely as in (4), giving go = 4, 7: = 2, Y: = 4 
and the well known result dF( = 1/ v )  = 4 (Zimm and Stockmayer 1949, Lubensky and 
Isaacson 1978). The result go=; ,  together with (8), agrees with ~ O = 2 . 5  (Parisi and 
Sourlas 1981). The effect of loops, however, is radically different from that for 
cluster-like aggregates. To recall, if a chain that describes a polymer-like aggregate 
self-intersects, it is rejected. The probability for a chain to attain s therefore is (for 

D / d f = $  y‘ = y :=3  giving v, = 4/ D. (15) 

0, cf ( 5 ) ) ,  

and clearly n, =zX. If O i - ( i - j ) - 2 , f r - I I f = 3  exp(-cl+c2/i)=[exp(-cl)]’s‘2 which 
conserves the scaling law n, - s-‘. Hence at D, ( 5 ) ,  

which gives D,= 8 (Lubensky and Isaacson 1978). Below D,, due to EV, d f  decreases, 
so as to preserve the scaling law form of l7 II (1 - 0,) and of n, (it appears that at D, 
itself c2 = 0). 

Linear chains. In the branching-out chains, the critical point strikes a balance 
between a decrease of the correlation in ‘time’ (as p ‘ ) ,  and its increase as the number 
of participating N N  particles increases (as 2,). This stochastic balance controls (SG,) = 0 
but leaves the fluctuation G ( s )  > 1, leading to branching. A similar balance is also 
possible with linear chains. The following linear analogue of percolation, called here 
the ‘woodworm’, offers an example. A lattice consists of wood and holes, with initial 
probabilities p and 1 - p respectively. The woodworm burrows a random walk through 
the lattice, consuming wood, and producing more holes instead. At each step, if it 
encounters wood, its weight G, increases by 1; if a hole, it slims down by -1. 
Irrespective of its weight it occupies one lattice site; it terminates when G, = 0. At D, 
and for p ,  (when (SG,) = 0), the average weight of walks reaching s steps is G(s) - SI’’ 

D , / d f =  2 or 0, = 2/[( 1 - go)v’:] ( EV rejection) (17) 
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or go=;  (cf (4)). The walk shows a complete similarity to the chain describing 
percolation, exhibiting EV avoidance (7). The only difference is that, for a linear chain 
df= l /u, .  In consequence, for the woodworm the first equation (7)  gives D,= 
(2 -go))/ U’: = 3. Another instructive example is an Ising lattice consisting of ai = 1 
alone. The probability to belong to the cluster is p = 1 and therefore z, = 1 .  There is 
no stochastic balance of p E  and z, no attendant G(s) > 0 and no branching; so go = 0 
and (equation (7) again) D,( = Drsnd) = (2 - 0)/ U: = 4. This explains the formal 
equivalence of the n = 0 vector model, perceived here as a linear analogue of the king 
cluster to linear SAW. But the SAW also constitutes the linear analogue of the branched 
polymer, i.e. go=O and, from (17), DC=2/u:=4.  This dual role, both cluster- and 
polymer-like, is possible because, when the linear SAW self-intersects it terminates 
automatically, be it due to an avoidance of the sole available choice z, = 1 or to rejection. 

Table 1 summarises the main findings obtained in the mean-field regime at D 2, D,. 
The different nature of the chains that describe three types of aggregates is traced to 
two causes. First, transient cluster-like against permanent polymer-like connectivity, 
requires, respectively, EV avoidance or rejection. The former leads to (7) for D,= 
D,(go, U,), the latter to (17). Second, the cluster-like connectivity may be athermal or 
thermal, giving rise, respectively, to a random or coupled ‘growth’ (construction) of 
the chain. The former leads to (4) for go, the latter to (14). In this sense table 1 tries 
to provide an intuitive ‘who’s who in random cluster chains’. The intuitive approach 
relies on a set of geometric exponents g, y, and U, (one of which only is independent). 
Their general connection to conventional exponents, if any, is presently unknown, 
though in the mean-field approximation go = 3 - TO (8). The intriguing findings are, 
the quasi-ideality of Ising cluster chains from D , = 4  to D =  8 (15), and their growth 
at D, in filaments that are strikingly more numerous (go  = 3, 7’: = 3) and more stretched 
(v, = 1 !), than both in percolation and in branched polymers (go = $, y: = 2 and U: = i). 
This geometric difference extends also to D < D, (Alexandrowicz 1980, 1985, Havlin 
et a1 1984). All these aspects are not brought to light by the conventional y and U 
and indeed are largely obliterated in the fractal dimension, since df= y , / u , .  

Table 1. 

Type of Percolation [sing spins Branched 
aggregate athermal cluster thermal cluster polymer 

Connectivity Transient + avoidance Transient --* avoidance Permanent + rejection 
and EV effect 
Growth at 0, Random Coupled Random 

U, at D, 4 (ideal) l! (15) f (ideal) 
DSg,,, U,) 6 (7), (4) 4 (7). (14) 8 (171, (4) 

go  f (4) f (14) t (4) 

Linear analogue Woodworm SAW SAW 

Dc=3  Dc=4 D,=4 
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